Deoxygenation of N,N-Disubstituted Hydroxylamines by Carbon Disulfide

Martin A. Schwartz*, Jiping Gu and Xiufeng Hu

Department of Chemistry, Florida State University, Tallahassee, Florida 32306

Key Words: carbon disulfide; deoxygenation; reduction of hydroxylamines; amine synthesis

Abstract: Hindered N.N-dialkylhydroxylamines react rapidly with CS2 to give the corresponding 2°-amines.

During the course of devising a new synthetic approach to hindered secondary amines,¹ we encountered the need to reduce N,N-disubstituted hydroxylamines to the corresponding amines. Standard methods for effecting this transformation include hydrogenation over Pd/C,² reduction with Zn/HCl² or with aqueous TiCl₃,^{3,4} or reduction of the derived phosphate or carbonate esters with Li in liquid ammonia.^{5,6} Since neither the direct hydrogenation nor the direct reduction methods gave satisfactory results in our hands with hydroxylamines that were both hindered and sensitive to C-N bond cleavage, we sought an alternate method.

Carbon disulfide is known to cause rapid deoxygenation of tertiary amine *N*-oxides by the proposed mechanism outlined in eq $1.^{7.8}$ The structure of the byproduct "COS₂" is uncertain, but it is known to decompose primarily to carbon oxysulfide and sulfur,⁷ or when generated in the presence of an alkene, to react to form the thiirane and carbon oxysulfide.⁸ An analogous deoxygenation of hydroxylamines by carbon disulfide might also be expected to occur, as outlined in eq 2. The only precedent for this expectation that we could find⁹ was a report that *N*-monosubstituted hydroxylamines reacted with carbon disulfide to give *N*,*N*'-disubstituted thioureas,¹⁰ presumably via generation of the primary amine which underwent further reaction with carbon disulfide. We have now found that carbon disulfide reduces hindered *N*,*N*-disubstituted hydroxylamines to secondary amines smoothly and cleanly.

$$R_{3}N^{+}O^{-} + CS_{2} \xrightarrow{\qquad} R_{3}N^{+}O^{-}C^{-}S^{-} \xrightarrow{\qquad} R_{3}N + (COS_{2})$$
(1)

$$R_2NOH + CS_2 \longrightarrow R_2NO-C-SH \longrightarrow R_2HN^+O-C-S^- - R_2NH + (COS_2)$$
 (2)

The results are summarized in Table 1. Dissolution of an N,N-disubstituted hydroxylamine bearing an N-tert-butyl group in CS₂ at room temperature resulted in a fairly rapid reaction with gas evolution (probably COS), to afford the corresponding 2°-amine in high yield; elemental sulfur could be isolated in 80-90% yields [based on (COS₂ \rightarrow COS + S) stoichiometry] by chromatography or by precipitation with methanol. The deoxygenation reaction was much slower with the N-methyl derivatives, but all of the reactions were accelerated by the use of acetonitrile as a cosolvent, as had previously been observed in the amine oxide deoxygenations.⁷ Hydroxylamines bearing sterically undemanding substituents such as N-benzyl-N-methylhydroxylamine underwent reaction very slowly, and predominantly suffered N-dealkylation (also observed with amine oxides⁸)

followed by condensation with CS₂ to give thioureas. On the other hand, the sterically very congested N,N-ditert-butylhydroxylamine underwent very rapid deoxygenation to di-tert-butylamine (the reaction was over in 2 min using pure CS₂).¹ These observations are consistent with the reaction pathway suggested in eq 2, with the rate-determining last step being accelerated by the relief of steric compression in the highly hindered cases. This CS₂-mediated deoxygenation therefore nicely complements other methods for hydroxylamine reduction.¹⁴

Hydroxylamine ^a	R	Reaction Time (hr)		Amine	
		CS ₂	CS ₂ /CH ₃ CN ^b	Yield ^c (%)	Ref. ^d
a \downarrow R	t-Bu	1.5	0.5	90	11
OH OH	Me	30	20	87	e
\frown					
	t-Bu	1.5	20 min	97	12
MeO	Me	48	4	86	12
	t-Bu	15	5 min	03	12
N ^{-K}	Ma	1.J # #	5 Hun 1 E	73	15
OH	IVIC	5.5	1.5	/1	е

Table 1. Deoxygenation of Hydroxylamines by CS₂.

^a See ref. 1 for the preparation of the *N*-tert-butylhydroxylamines; the *N*-methylhydroxylamines used in this study were prepared by NaBH₄ reduction of the corresponding methylene nitrones. ^b Saturated solution, ca. 19% CS₂ (v/v). ^c Isolated yield of amine after flash chromatography. ^d Spectral data for product amines were in agreement with literature values. ^e Authentic sample prepared by reductive amination of the ketone with methylamine.

References and Notes

- 1. Schwartz, M. A.; Hu, X. Tetrahedron Lett., following paper in this issue.
- 2. Murahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736-1744.
- 3. Murahashi, S.; Kodera, Y. Tetrahedron Lett. 1985, 26, 4633-4636.
- 4. Liebeskind, L. S.; Welker, M. E.; Fengl, R. W. J. Am. Chem. Soc. 1986, 108, 6328-6343.
- 5. Chang, Z. Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3464-3474.
- 6. Chang, Z. Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3475-3483.
- 7. Yoshimura, T.; Asada, K.; Oae, S. Bull. Chem. Soc. Jpn. 1982, 55, 3000-3003.
- 8. Zipplies, M. F.; De Vos, M.-J.; Bruice, T. C. J. Org. Chem. 1985, 50, 3228-3230.
- 9. Dunn, A. D.; Rudorf, W.-D. Carbon Disulphide in Organic Chemistry; Ellis Horwood Ltd.: Chichester, 1989; Chapter 8.
- 10. Haugwitz, R. D. Liebigs Ann. Chem. 1970, 731, 171-173.
- 11. Cliffe, I. A.; Crossley, R.; Shepherd, R. G. Synthesis 1985, 1138-1140.
- 12. Rishton, G. M. Ph.D. Dissertation, Florida State University, 1989.
- 13. Stowell, J. C.; Padegimas, S. J. Synthesis 1974, 127-128.
- 14. See the following paper for representative experimental procedures.

(Received in USA 18 December 1991)